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Abstract

Financial networks are vulnerable to contagion and systemic risk. A financial
network’s stability, in particular, depends on the resilience of Systemically
Important Financial Institutions (SIFIs). In this article, we introduce a met-
ric to identify SIFIs. The metric is based on an explicit characterization
of the system’s equilibrium behavior. We consider different mechanisms of
contagion: common shocks, domino-fashion sequential defaults, and combi-
nations thereof, emerging from random institutes or SIFIs. We measure the
stability of the financial system by means of a system-wide leverage ratio.
Furthermore, we analyze to what extent macroprudential policies can reduce
the transmission of shocks in the system. Our findings show that none of
the existing regulatory policies—when considered individually—can prevent
or mitigate a systemic collapse.

Keywords: Financial Networks, Systemic Risk, Financial Stability,
Macroprudential Policy

1. Introduction

The recent financial crisis has shed light on the importance of the degree
of complexity of the financial system for systemic stability. The elements
of such a system are strongly connected such that the entire system is non-
decomposable. The structure of this system dynamically changes, and the
system possibly moves away from a stable state. To design proper regula-
tory and supervisory mechanisms to stabilize the financial system, we need
to therefore understand its dynamics and how the system changes over time.
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We study the stability of an interbank system as a complex network.
A network approach may yield a better understanding of the complexity of
financial systems. Network theory provides tools to assess the stability of
a system and to identify systemically important players. Network models
can explain the dynamics of exposure transmission through the system and
quantify systemic stresses.

In our network setting, nodes of a network might represent financial in-
struments or financial institutions such as different types of banks, insur-
ance companies, and hedge funds. The connections or links might represent
transmissions of financial stress at the time of default or the dependency
of institutions holding common assets. The most comprehensive and com-
plete theoretical model of a financial network was studied by Allen and Gale
(2000), who extended the banking model of Diamond and Dybvig (1983) into
a full network. Allen and Gale (2000) examined the role of networks within
a standard three-date banking model with liquidity distress and liquidation
costs at intermediate dates and showed how small shocks, which primarily
affect only a small number of institutions, spread through the whole system.
A real interbank network was studied by e Santos and Cont (2010), who
analyzed the role of network approaches in the estimation of systemic risk
by defining a metric to identify causes of contagion using a data set of bilat-
eral exposures of Brazilian financial institutions. The interconnectedness of
financial systems has been emphasized in some recent studies: Glasserman
and Young (2015) and Amini et al. (2012a) applied a network-type model to
analyze the likelihood of transmission of financial exposure in interbank net-
works. Poledna et al. (2015) considered a financial system as a multi-layer
network to investigate systemic risk. Lee (2013) set up a simple banking
system model and found that inequality in liquidity positions across banks
is more likely to intensify liquidity shortages in insolvent banks.

In our study, we measure systemic risk using network science. In the after-
math of the 2007–2008 financial crisis, there have been numerous studies on
systemic risk. The concept of systemic risk might be defined as the propaga-
tion of shocks in the financial system as a result of exogenous or endogenous
events that have a significant impact on the economy. Systemic risk has a
huge impact on financial system resilience and can inflict severe damage to
the economy. There have been various attempts to measure systemic risk.
The Handbook of Systemic Risk Fouque and Langsam (2013) collected vari-
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ous aspects of systemic risk that impact financial markets. There exist many
works on the measurement of systemic risk by means of network science. In
a network approach, the collapse of an individual firm or groups firms can
cause a cascading failure and bring down the entire system. From this per-
spective, systemic risk refers to the risk emerging from the interdependencies
within a system. Eisenberg and Noe (2001) remain one of the pioneers of
measuring systemic risk with a network approach. They applied fixed-point
theory and found a market-clearing equilibrium based on a clearing payment
vector with proportional sharing of risk among the counterparties in the net-
work.

Adrian and Brunnermeier (2011) proposed a metric (COVaR) to mea-
sure co-dependence in the tails of equity returns of financial firms. The
primary idea is to find institutions with high tail risk, and (thus) greater
exposure to risks from systemic liquidity hoarding. This metric is based on
a quantile regression method using equity price and balance sheet informa-
tion. Another tail measure technique, suggested by Acharya et al. (2010), is
called Systemic Expected Shortfall (SES), which measures using an empiri-
cal sampling-scaling method how much an institution, at the aggregate level,
might be undercapitalized during a systemic financial crisis. This metric too
is based on the information on equity prices and balance sheets. Due to the
limited historical data and a very small number of extreme financial events, a
tail measure approach might not measure the magnitude of a financial crisis
correctly.

To identify Systemically Important Financial Institutions (SIFIs) in a
banking system, we apply a network-based model in a single-period frame-
work. Note that SIFIs can be banks or other financial institutions, and may
also be non-financial institutions whose failure can cause a systemic collapse.
Battiston (2012) developed a metric called DebtRank to measure the sys-
temic impact that is inspired by the feedback-centrality of a network. The
SinkRank metric was introduced by Soramäki and Cook (2013) and predicts
the severity of disturbance caused by the failure of an institution in a payment
system. Huang et al. (2009) proposed a framework for measuring systemic
risk in a set of major financial institutions.

We focus on two main contagion mechanisms. The first mechanism has
been studied by Gai and Kapadia (2010), Nier et al. (2007), and Upper
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(2011) who modeled shocks that could spread throughout the entire system
or a part of it in a domino fashion due to interlinked financial exposures.
Brunnermeier (2008) and Gai et al. (2011) considered a second channel of
contagion, namely common shocks (as caused by exogenous factors) affecting
the entire system. Another transmission channel is asset price contagions,
that is, co-movements in asset prices caused by a common shock in an illiq-
uid market. Adrian and Shin (2010), Cifuentes et al. (2005), and Coval and
Stafford (2007) developed theoretical models of the impact of asset price con-
tagion on financial systems.

We consider the stability of an interbank system and how to measure
it in a network-framework. We compute the stability of a banking system-
based financial leverage ratio defined on the basis of the degree of interbank
network connectivity and exposures. Financial stability refers to the ability
of the system to constantly supply payment services and credit, which are
necessary for economic growth (Beck (2014)). It is essential to clarify the con-
cept of financial stability and its underlying factors. Knowing these factors
is critical to designing appropriate regulatory and supervisory mechanisms.
There is no standard framework to assess the stability of financial systems
and to examine financial regulation policies. The health status of financial
institutions does not indicate the stability of a system and similarly, individ-
ual defaults do not necessarily lead to system instability. Financial market
fluctuations, group failures of financial and non-financial institutions, lack
of intermediation services, and other issues have systemic consequences on
the economy. Nevertheless, it is not well understood which of these sources
contributes more to system instability. To measure financial stability, in a
broader perspective, we need to identify factors that have a substantial im-
pact on the financial system. Some studies attempt to measure systemic
stability as an aggregation of stability at the institutional level. Financial
stability in an interconnected complex system has been studied by Battiston
et al. (2012), Amini et al. (2013), and (in a recent study by) Acemoglu et al.
(2015). These works used a complete network of exposures wherein all nodes
have direct financial interactions and obtained a network equilibrium. In
their network setting, all nodes are homogeneously connected. Elliott et al.
(2014) considered the heterogeneous setup of an interbank exposure network
and studied the effect of highly interconnected nodes on contagion stress
through the network. This study found a non-linear relation between the
diversification of the exposure and the number of default nodes. However,
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these metrics are defined in a closed banking system without considering the
important role of system interconnections.

The main aim of this article is to arrive at a better understanding of
the factors associated with systemic collapse. We hope to clarify the inter-
relationship between the individual characteristics of financial institutes and
the financial system, and make recommendations designed to enhance system
stability. We analyze the impact of macroprudential policies on systemic fi-
nancial stability, and how these policies diminish the effects of shocks in
different network configurations. Systemic crises are rare but might severely
damage entire economies. To prevent systemic crises while facilitating eco-
nomic growth, it is essential to improve the resilience of the financial system,
without excessively costly regulation and higher microprudential capital stan-
dards.

In other words, it is vital to choose the appropriate aggregate or particu-
lar capital- or liquidity-based prudential regimes. In the models by (Gertler
et al. (2012)) and (Wagner (2010)), microprudential policies focus on the risks
and resilience of individual institutions with the objective of minimizing fail-
ure at the individual level. Hanson et al. (2010) comprehensively reviewed
macroprudential policies and how these policies might be designed.

In this paper, we study the stability of an interbank network as a com-
plex system. We review the sources of a systemic collapse. Using fixed-point
theory, we identify Systemically Important Financial Institutions (SIFIs) in
the financial network by considering the explicit characterization of the equi-
librium behavior of a banking system. We discuss the stability of a financial
system and how to measure it in an interbank network. We simulate a
random financial network based on the parameters of a real financial net-
work. In our simulation, we focus on different mechanisms of contagion:
common shocks and domino-fashion sequential defaults and combinations of
both mechanisms started by random institutes or SIFIs. We apply various
micro- and macroprudential policies to reduce systemic liquidity surcharges
and mitigate the effect of shocks within different network configurations. Af-
ter applying these policies, we assess the stability of the system and identify
the weakest link or node in the network.

Our results highlight that when designing suitable regulatory and super-
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visory regimes to identify financial stability, we need to consider the mecha-
nism underlying financial stability to ensure continual provision of financial
services for economic growth. Policymakers should use specific indicators to
identify SIFIs and accordingly propose macro-prudential tools for an unseen
systemic crisis. A weakness of Macro-prudential tools is to set regimes tightly
in regular times for both SIFIs and non-SIFIs; this, however, might have an
effect on the efficiency of banks during normal times. Our numerical results
indicate that it is vital to choose suitable aggregate or specific macropruden-
tial regimes for SIFIs and non-SIFIs in a system.

The remainder of this paper is organized as follows. Section 2 schemat-
ically characterizes a bank’s balance sheet, describes the network approach
to financial systems, and explains the concept of systemic risk and the mech-
anism of financial contagion. We introduce a metric to identify SIFIs in a
financial system in section 3. The mechanism of financial contagion is ex-
plained in section 4. The concept of financial stability is the subject of section
5. We provide common issues associated with regulation of financial insti-
tutions in section 6. Section 7 presents a numerical simulation of the model
and demonstrates some experiments to investigate how regulatory regimes
affect system stability. Section 8 concludes the paper with further remarks.
Further discussions on network science and the proofs of the propositions are
given in the appendix.

2. Balance Sheets, financial networks and systemic risk

2.1. Balance Sheet Analysis

In simple terms, a bank’s balance sheet contains information on how much
the bank owns, how much its counterparties owe to the bank, how much the
bank owes to its counterparties, and on the size of its equity. The structure
and size of the liabilities and assets on a balance sheet can be a significant
source of the weakness of financial institutions in times of crises. In this
study, we concentrate on the key characteristics of banks’ balance sheets.
Typically, the values in banks’ balance sheets refer to the values of assets
and liabilities that are decomposed into interbank and non-interbank quan-
tities depending on credit and/or counterparty debt. A complete balance
sheet investigation requires detailed information on the size, maturity, and
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structure of the assets and liabilities.

Table 1 schematically characterizes a bank’s balance sheet. On the left-
hand side of a bank’s balance sheet, assets are listed as fully liquid assets (AL)
such as central bank reserves or government bonds. Other types of assets in-
clude fixed assets (AF ) such as mortgages or individual corporate loans, and
collateral assets (AC) that can be used as collateral in repo transactions. On
the right-hand side, liabilities are usually listed as interbank liabilities (i.e.,
unsecured financing borrowed by a bank from its counterparties). Secured
repo liabilities, collateral borrowing, and external financial sources like retail
deposits (LD) are other classes of liabilities.

Assets Liabilities
Interbank Assets Ainte Interbank Liabilities Linte

Fixed Assets AF Deposits LD

Collateral Assets AC

Liquid Assets AL

· · · Capital K

Table 1: A stylized balance sheet.

For some banks, balance sheet information on the size and maturity of
liabilities and assets is incomplete or not publicly available. The uncertainty
of asset quality and the need to turn over liabilities can lead to liquidation
risk in the short term and solvency issues in the long term. The portion of
the asset value that is used as collateral is called the haircut.

The value of one-unit of a collateral asset is given by

V c = (1− h− hi)Ac (1)

where hi is the risk-based individual haircut and h is the aggregate haircut.
A bank can borrow a maximum of V c from the central bank against one unit
of the collateral asset (Ac). Fecht et al. (2015) showed that a collateral’s
haircut depends on the collateral’s type and coupon type. Haircut size is
often related to the asset’s liquidity risk. The higher the value of the haircut,
the safer the position of the lender, and the better protected the lender is
against losses arising from sales of collateral due to counterparty defaults.
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2.2. Financial Networks
Studying the complexity of financial systems shows that the network of

financial institutions’ interactions plays an important role in determining the
systemic importance of individual institutions in a system. Therefore, it is
necessary to devise a theory of how such systems work and how they are
built. The growing literature on financial network formation addresses a va-
riety of questions: how the systems are constructed, how asset values are
allocated to the players, and finally, how counterparties are chosen. The net-
work approach plays a vital role in modeling the information and financial
flows through a system and in explaining the dynamics of exposure trans-
mission through the system. From this viewpoint, systemic stress can be
quantified by analyzing the dynamic structure of a network.

Depending on how relationships are defined, networks can take different
shapes. A non-directed graph is the simplest form of a network, where two
actors are either joined or not. Another type of system is constructed using
nodes and directed links between them. This type of network is central to
our model, which aims to determine the most systemically critical nodes in
a network.

In our set-up, a complex financial network consists of nodes representing
financial institutions and links representing their financial dependencies. In a
stylized network, V(i∈{1,...,N}) is a set of financial players who are connected in
a network relationship where links (Eij) represent economic activities. For-
mally, our set-up is a directed network.

In this network setting, nodes represent financial institutions, such as dif-
ferent types of banks, insurance companies, and hedge funds, and the link Eij

t

represents financial stress, for example, at the time of institutional default.
Banks use capital buffer Ki

t against financial stress. In this weighted-network
setting, we define a matrix W as an adjacency matrix with entries that rep-
resent the strengths of nodes relative to each other if there are interbank
relations between them; the entries are zero if no such relations exist. In
our banking model, the strength of a node is described by relative financial
exposure to its counterparties.

A common way to describe a network is by means of the distribution of
the degree of nodes. The in-degree of a node represents the number of credi-
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tors: degreeini ? = #{j?W |wji > 0}. Similarly, the number of debtors can be
explained by the number of outgoing links, degreeouti ? = #{j?W |wij > 0}.
The network’s degree distribution, Pdegree(degree

in, degreeout), is defined as
the distribution of nodes in a given network, where the in-degree is denoted
by degreein and the out-degree by degreeout.

2.3. Systemic Risk

Systemic risk refers to the propagation of shocks through the financial
system as the result of exogenous or endogenous events that have a signifi-
cant impact on the economy. An individual institution may be exposed to
different types of financial risk: market risk, credit risk, liquidity risk, and
operational risk. These classes of risk appear at individual levels and can be
mitigated by applying microprudential policies. On the other hand, systemic
risk might sometimes not be mitigated through diversification. The foremost
source of systemic risk is default contagion in interbank markets as a re-
sult of economic distress, which spreads throughout the financial system in a
domino fashion or due to the effects of common asset exposure. Some empir-
ical studies show that the concentration of a large number of institutions on
common assets and a default in one institution might lead to the insolvency
of that institution’s counterparties who hold the same assets. The flash crash
in May 2010 showed that the mispricing of assets can be an additional source
of a systemic liquidity crisis. Thus, the measurement of systemic risk is not
just the quantification of the exposures of bank portfolios to risk factors, but
also that of the links among banks/institutions to determine exposures to
counterparties. One of the leading factors of systemic risk is the contagion
of monetary distress in the financial system in a domino fashion. Measuring
and quantifying the spillover effects that arise from direct and indirect con-
nections between firms is complicated. A network approach is well suited for
dealing with the dynamic propagation of shocks within the economic system
and the heterogeneous characteristics of the financial system. The connectiv-
ity and centrality of a financial network can play different roles in absorbing
or amplifying stresses during crisis and non-crisis periods. It is essential to
study the mechanisms that can lead to systemic collapse and identify the
metrics for systemic risk.
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3. Systemically Important Financial Institutions (SIFIs) and their
Identification

Banks, insurance firms, and other financial institutions, whose break-
down may cause an economic crisis, are systemically important if they are
connected to other institutions via main transmission channels. Such in-
stitutions might have relations with other firms that are also indicated as
systemically important institutions. It is essential to recognize SIFIs in a
financial system, for these firms have become the main targets of legislation
and regulation. New regulations require the financial institutions recognized
as SIFIs to have contingency plans for possible systemic failures and to hold
higher capital or liquidity buffers than non-SIFIs. These regulations try to
prevent SIFIs from becoming “too big to fail” or “too connected to fail” and
from running into financial trouble in crisis events.

The Financial Stability Board (FSB) and G20 periodically update the list
of international financial institutions, which are strong transmission channels
to many other institutions, called Global Systemically Important Financial
Institutions. Several factors have been used to identify these institutions.
The first one is total assets and revenues, representing the size of an orga-
nization. Additional factors are revenues derived from non-home countries
and holdings of intra-financial assets and liabilities as a measurement of the
interconnectedness of an institution.

Financial institutions are typically vulnerable to instability since mostly
they finance long-term assets with short-term liabilities or interbank liabil-
ities. When a firm experiences monetary difficulties, its counterparties can
become unwilling to maintain financial relationships with it. As a result, the
firm suffers from a liquidity problem or a solvency problem, and it imposes
stress to its counterparties. As systemic risk can also arise from other (i.e.,
non-financial) sectors, even non-financial firms need to be taken into account
as systemically important institutions.

We use a network-based model of the interbank system to identify the
SIFIs in a banking system. Later, we examine the mechanism of liquidity
shortages, which might spread through the financial system via interconnec-
tions; we use this model for evaluating the effectiveness of our macropruden-
tial scenarios to assess financial stability.
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By looking at a snapshot of the financial system, we define an index
to measure the impact of the distress of institutions on the entire banking
system in a recursive way. We use this index to identify the systemically
important institutions associated with the structure of dependencies of fi-
nancial institutions.

The proposed model is a single-period model of interbank activities. We
use a stylized balance sheet (Table 1) to reflect an actual balance sheet of all
types of banks involved in both commercial and investment banking. The
stylized balance sheet of bank (i) consists of assets listed as fully liquid assets
(AL)i, fixed assets (AF )i, and collateral assets (AC)i. The right-hand side of
the balance sheet of bank i lists unsecured interbank assets from bank i to
bank j, (Aint)ij, unsecured interbank liabilities of bank i to bank j, (Lint)ij,
and repo deposits, (LD)i.

The capital of a bank is defined as the difference between its asset value
and its liabilities. It can be considered as the margin when a bank liquidates
its assets, and the amount that would be received by its creditors. Banks
determine the optimal capital level by examining how much capital must be
provided to prevent insolvency risk. Capital buffers are critical factors in
forcing liquidation and preventing contagion. Interbank contagion can be
restricted if the banks are well capitalized in response to possible exogenous
shocks. In our model, capital buffer can be expressed as

Ki = (AF )i + (AC)i + (AL)i +
∑
j

(Aint)ij −
∑
j

(Lint)ij − (LD)i. (2)

Each institution (node (i) in the network) uses capital Ki against financial
stress. We consider a directed weighted network where the nodes represent fi-
nancial institutions that have financial exposures to their counterparties. The
exposure link (Eij) defines the interbank exposure of a bank, and comprises
its unsecured interbank assets and liabilities. It is supposed that interbank
assets of an institution are distributed equally over its counterparties.

Eij = (Aint)ij − (Lint)ij. (3)

A bank becomes insolvent when its current liabilities exceed its current
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assets. Gai and Kapadia (2010) defined the solvency condition as follows:

(1− φ)
∑
j

Eij
t + (AF )i + (1− h− hi)(AC)i + (AL)i − (LD)i > 0, (4)

where φ is the portion of banks with obligation to bank i when it defaulted.
The risk-based individual haircut hi and aggregate haircut h are portions
of assets used as collateral to protect lenders against counterparty defaults.
Gai and Kapadia (2010) assumed that the counterparties of a defaulted bank
lose their interbank assets held by that bank. Therefore, we can express the
solvency condition of bank (i) as follows.

Definition 1. Solvency Index
The solvency index is defined as a measure of an individual institution’s abil-
ity to meet its debt and other obligations:

Solvencyi =
(AF )it + (1− h− hi)(AC)i + (AL)i − (LD)i∑

j E
ij

> (1− φ). (5)

This index is a form of leverage that can also be expressed as a leverage
multiple. This means that whenever a node i defaults, its counterparty node j
faces loss Eij, and without the required capital buffer, it becomes insolvent.
Given this, we define the vulnerability weight as the ability of a node to
control the transmission of shocks of its counterparty or when it is under
distress or has defaulted.

Definition 2. Vulnerability Weight
In an interbank network, the vulnerability weight of a node is defined as the
portion of capital that is reduced because of the solvency risk of its counter-
party:

wij =
Eij

Ki
. (6)

3.0.1. Systemic Impact Index

Based on the underlying factors of the solvency condition of a bank, the
health status of a bank depends on the status of its counterparties. If one
or some of its counterparties (which are well connected) default, the bank
is unable to accomplish its long-term obligations; consequently, it becomes
insolvent. Therefore, the relative impact of one firm on its counterparties can
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be defined as the fraction of its solvency risk dependent on the cumulative
solvency of its neighbors: ri = Solvencyi∑

j Solvencyj
, j ∈ {j|Eij > 0}.

As mentioned earlier, the vulnerability weight measures an institute’s
ability to control the transmission of stress to its counterparties. Hence, we
can characterize the economic value of the impact of one institute on others
by the relative solvency condition of the institute with respect to its coun-
terparties.

We define a systemic impact index as a metric to measure systemic risk by
taking into account both common idiosyncratic shocks and contagion through
counterparty exposures. This index helps rank institutes with a systematic
view of their contribution to the transmission of stress through the financial
system.

Definition 3. Systemic Impact Index
Similar to Battiston et al. (2012), we define the systemic impact index as a
measure of the expected loss generated by the collapse of a financial institution
(i) as well as the financial stress that has been received from its counterparties.
It can be expressed as

xi = α
∑
j

wijxj + β
∑
j

wijri α + β = 1, (7)

where α and β are the fractions of stress imposed by a single firm and the
entire system, respectively.

Intuitively, the systemic impact index for a financial system represents
a specification of the stress induced by each of the nodes in the financial
system; this stress is associated with the distribution of capital among the
nodes. The total interbank liabilities of a node should never exceed the
available capital buffer. Each node must pay off its outstanding interbank
obligations equally. Relatively, if a default occurs, all counterparties are paid
by the defaulting node equally.

To find an equilibrium and establish a fixed-point characterization of the
systemic impact index, we rewrite Equation (7) as a matrix from Sadoghi
(2015):

x = T Tx, (8)
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where matrix T is expressed as T = αW + βWr and vector x represents the
ranks of SIFIs. In the following proposition, we present a successive approx-
imation method for computing x as the rank of SIFIs.

Proposition 1. Systemic Impact Index
In equilibrium, the systemic impact index for each node of a (directed) inter-
bank network can be determined as a solution of the fixed-point iteration

xk+1 =
k

k + 1
Wxk +

1

k + 1
Wr1,

where k is the number of iterations needed to monotonically converge to a
fixed point.

The proof is given in the appendix.

To construct a solution, we use a successive approximation to find a fixed
point, and state and prove the existence and uniqueness of the equilibrium
by means of the contraction mapping theorem.

Definition 4. Let X be an economy (financial system) defined as a set of
firms (x ∈ X) and let Φ : X → X be a continuous transformation function
that maps X onto itself. A fixed point of Φ is an element x ∈ X for which
Φ(x) = x. We use the notation Φ(x) = x in place of x = T Tx.

The main problem is to define sufficient conditions on Φ and T to en-
sure the existence and uniqueness of a fixed point and to find procedures
for the calculation of fixed points. To compute the successive approxima-
tions and prove the existence of a fixed point, we use an iterative scheme:
xn+1 = Φ(xn){n=1,2,··· }. Using the Brouwer fixed-point theorem, we prove the
existence and uniqueness of the systemic impact index in a banking network.

Proposition 2. Existence and Uniqueness of the Systemic Impact
Index
In a financial system with N firms with interbank activities being represented
by matrix T and by a continuous transfer function Φ,
(a) there exists an index associated with the ranking of systemically important
firms in the network;
(b) transfer function Φ has a unique fixed point in matrix T .
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The proof is given in the appendix.

4. Mechanism of Financial Contagion

In this section, we review the dynamics of cascade models in an inter-
bank system and explain the cascade mechanism we use in our simulation
study. A prototypical cascade model is based on a number of financial insti-
tutions interconnected through directed interbank activities. This procedure
creates a series of finite steps until the “cascade equilibrium” emerges as a
steady state. Hurd (2015) defines the “cascade equilibrium” as a state of
the system with no newly insolvent (defaulted) financial institutions. This
equilibrium can be a partial equilibrium depending on the network structure.

In an interbank system, either shocks can spread throughout the entire
system or a part of the same in a domino fashion due to interlinked financial
exposures or common shocks caused by exogenous factors affecting the whole
system. The stress caused by counterparty default may be strengthened by
the indirect asset price contagion in an illiquid market. Consequently, the
insolvency of an institution causes write-downs in the value of assets held
by its counterparties and might lead to a default. A combination of these
channels causes either idiosyncratic or aggregate shocks and threatens the
stability of the system.

Hurd (2015) categorized cascade mechanisms into three classes and char-
acterized their common features. The first type of cascade, called “default
cascade,” explains how the default of an individual institution might impact
its counterparties, trigger a new default, and lead to a systemic collapse of
the entire economy. In the second type of contagion, an illiquid institution
might call its loans from its debtors, and thereby impose liquidity shocks on
its counterparties and lead to a liquidity cascade in the entire system. The
third type of cascade, called “asset fire sales,” is observed when the stress
caused by counterparty default can be strengthened by an indirect asset price
contagion, mainly in an illiquid market. Consequently, the insolvency of an
institution causes write-downs in the value of the assets held by its counter-
parties, and might lead to a default.
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As mentioned above, insolvency occurs when a bank’s net worth is re-
duced to zero, that is, when its total losses exceed its capital buffer (

∑
j Eijt >

Ki
t). Thus, the solvency condition in a default cascade can be expressed as∑

j

Eij
t > (AF )it + (1− h− hi)(AC)it + (AL)it − (LD)it.

The default cascade is started by an individual insolvent institution or a set of
insolvent institutions and continues in a domino fashion because of interlinked
financial exposures. This procedure can be modeled by updating the balance
sheets of affected counterparties at each step. The capital reserves of the
nodes of the network are defined as Kj

t , j ∈ {1, · · · , N})t ≥ 0; these are
updated as follows:

Kj
t+1 = (Kj

t −
∑

i∈Ψ(K)

(1−Ri)E
ji
t )+, (9)

where Ri is the recovery rate of the defaulting institution i, and Ψ is the set
of insolvent institutions given as

Ψ(K) = {j ∈ V{1,··· ,N}|Kt−1(j) = 0 ∪Kt=0(j) = 0}. (10)

Ψ includes the group of insolvent institutions at the initial step of the pro-
cedure, as a result of the primary cascade. This set will be updated in each
step with newly defaulted institutions.

5. Financial stability

After the recent financial crisis, economic stability and related issues have
received a lot of attention. It has been argued that to understand the sta-
bility conditions of the financial system, a variety of factors underlying the
systemic crisis need to be considered. Fluctuations in financial markets,
group failures of financial and non-financial institutions, lack of intermedia-
tion services, and other issues have systemic consequences. The health status
of financial institutions alone does not indicate the stability of a system, and
similarly, individual defaults do not lead to financial instability. Therefore,
it is essential to clarify the concept of financial stability and its underlying
factors.
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The scope of the definition of financial stability is broader than the bank-
ing system. The stability of a financial system is associated with economic
growth, which is facilitated by the financial sector providing financial services
on a continuous basis. The potential problems that have a substantial im-
pact on the economy are the central elements of financial instability. There
is no standard method to quantify and assess the stability of a financial sys-
tem. As mentioned earlier, interbank contagion and common shocks caused
by correlated illiquid assets are major sources of systemic risk. Nevertheless,
it is not well understood which of these sources contribute more to the in-
stability of a system. New insights into systemic crises show that different
factors threaten financial stability. Thus far, no comparison of the different
systemic risk characteristics in a particular model has been conducted in the
economic or banking literature.

A recent study of the stability of the financial system by Acemoglu et al.
(2015) introduced a game network and defined financial stability as the in-
verse of the expected number of defaults in a financial network. The authors
define the resilience of a financial system as the inverse of the highest number
of potential defaults. Another study by Gofman (2014) defined stability in
the banking system as the efficiency of the financial system subsequent to
the group failures of institutions. Some studies attempt to measure systemic
stability as an aggregation of institutional-level stability metrics. Neverthe-
less, these metrics are defined in a closed banking system without considering
the critical role of the interconnections of the system. To measure financial
stability in a broader perspective, we need to identify factors that have sub-
stantial consequences for the financial system.

Jackson and Van den Nouweland (2005) used a non-cooperative game
model to explain a stable network. In a stable network, none of the players
is unilaterally willing to drop their connections and if one player has the ben-
efit of establishing a new connection, other network players suffer by adding
the new link. This type of stability can also be investigated using the sequen-
tial game of Currarini and Morelli (2000). The existence of a stable network
can be proved with a (subgame perfect) equilibrium and depends on how the
stability of the system is modeled. This definition merely considers the value
of a link for the players at a particular period. However, in a real system,
players might continually reorganize their connections to receive more bene-
fits from the system or to reduce their costs.
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Beyond the static modeling of a network, we can consider dynamic char-
acteristics of a network whose links or vertices can be added or deleted. The
key properties of a dynamic network are the interconnection and complexity
that represent how players share resources among their counterparties. Watts
(2003) explained the stability of the dynamic network, using an undirected
network model to define the stability of the dynamic network. A dynamic
network is a stable network if no connection would ever be added or removed
over time. The central question is whether different nodes, when they reor-
ganize their connections, have a similar effect on other players’ performance.

The recent economic crisis has highlighted that it is essential to under-
stand the network structure of the financial system, and the role of coun-
terparty risk when assessing systemic risk. The triggering of a cascade of
counterparties’ failures in the financial network depends on the structure of
the system and its dynamical properties. To study the structural properties
of a dynamic network, we use standard statistical measurements of networks.
The connectivity of a network can be measured by the ratio of actual to po-
tential links in a dynamic network. The portion of links that do not alter
between two adjacent periods reflects the partial stability of the network. The
out-degree and in-degree of nodes capture how nodes are connected, in the
interbank network; these properties represent the degree of mutual lending
between banks. Other properties like betweenness and closeness, centrality,
and diameter measure the connectivity and centrality of the network. In an
interbank network, these properties measure the extent to which a bank lies
“between” the others in the flow of interbank activities and how fast it can
reach all other nodes. Other properties such as clustering and modularity
quantify the decomposable characteristics and strength of the division of a
network (these are briefly explained in the appendix).

Empirical studies of banking systems show that the relationship between
financial stability and the degree of connectivity is not monotonic and de-
pends on the size of interbank liabilities. A more connected banking system
is more fragile to contagious defaults, and better-capitalized banks are more
resilient to larger systemic risk. However, the relationship between the prob-
ability of contagion and level of capital is not linear. The May–Wigner sta-
bility theorem May (1972) states that the stability of a large complex system
can be inferred from its size and density and from the interactions between
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its elements and that increasing the complexity of the system leads to a de-
crease in stability. The statistical properties of an interbank network could
help measure its stability and identify circumstances under which macropru-
dential regulations could mitigate systemic collapse.

There are different academic views on the relationship between the struc-
ture of the financial network and systemic risk. Some studies like Allen and
Gale (2000) and Freixas et al. (2000) suggested that the incompleteness of a
financial system might be a source of its instability, that is, a more complete
financial network is a more stable system. A study by Castiglionesi et al.
(2010) showed that a system with more dense financial integration is more
stable to any individual bank’s insolvency. The result of a study of the UK
financial system by Haldane et al. (2009) showed that a financial network
with a higher degree of connectivity may be a “robust-yet-fragile”? system.
In a certain range of connectivity, the interconnection enhances the robust-
ness of the system and absorbs the shocks; however, beyond that range, it
serves as a means for the spread of shocks through the system.

On the contrary, other studies showed that more interconnections desta-
bilize the system and contribute to its fragility. Blume et al. (2011) compared
the interbank system with an epidemic system and concluded that the likeli-
hood of a systemic failure increases when the number of counterparties grows.
In a similar way, Vivier-Lirimont (2006) argued that the magnitude of the
spread of negative shocks increases with the density of the interconnected
system, and that density can be deemed a mechanism for the propagation of
shocks. In summary, financial interconnection has a key role in the stability of
the system, but a higher number of connections is not a guarantee of stability.

To study the dynamics of the financial system, we need to build a link
between the dynamical properties associated with a financial system and the
relationships among network players. We use a model of the banking system
and investigate the stochastic stability of interbank activities. Applying the
stability theory of dynamical systems, we can assess the stability of a finan-
cial system. The stability of a financial system can be understood via the
stability of its fixed point in equilibrium. In fact, the stability of a financial
system as a dynamic system can be measured by changing the structure of
the network over time.
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We develop a dynamic model of a banking system to analyze the impact
of different macroprudential policies on financial stability and to support
decision-making processes. This dynamic model can be used to explore the
behavior of complex financial systems, particularly the nonlinear interac-
tions of network structures and system stability. This model represents a
system that evolves over time as a result of internal and/or external actions;
further, the model’s outputs change with perturbations in its inputs. The
model allows us to draw conclusions on the robustness of the system against
perturbations from unexpected events, environmental changes, and whether
changes, enabling us to improve its stability and robustness. It can also be
used to identify the weak points of the system that might contribute to large
variations in the system’s stability.

To measure the dynamical stability behavior of a banking system, we use
the information about the system that we used to identify SIFIs. Matrix T
in Equation (8) captures the exposure information of a network associated
with the conditional status of a financial institution and the status of its
counterparties. In our network model, based on the underlying factors of the
solvency condition of a bank, the vulnerability weight of a node is defined
as the reduction in capital due to the solvency risk from its counterparty: in
other words, the health status of a bank depends on the status of its coun-
terparties. The defined solvency condition can measure the level of debt held
by a bank. When the debt ratio is high, the firm holds much debt relative
to its assets. The lesson from the recent global financial crisis is that the
build-up of extreme leverage can facilitate a systemic crisis in the banking
system.

We define financial leverage (expressed as leverage multiple) of a bank
using capital reserve updating information in a counterparty network (Equa-
tion (9)). Index Υi(t) measures the financial leverage of company i at time
t. This index determines the capability of an individual institution to meet
its debt and other obligations at time t with the capital reserve at time t−1:

Υi(t) =
Ki

t−1∑
j E

ij
t +

∑
j∈Ψ(i)(1−Rj)E

ij
t )+εit

. (11)

The Basel III framework (Committee et al. (2010)) introduced a straight-
forward non-risk based leverage ratio to determine risk-based capital re-
quirements. This leverage ratio, known as leverage multiple, expressed as
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Capital/Exposure, where capital is the Tier 1 capital of the risk-based cap-
ital and exposure can be determined via summation of the on-balance sheet
exposures (e.g., collateral assets), off-balance sheet items, derivative expo-
sures (e.g., credit risk), and securities financing transaction exposures. The
non-risk-weighted leverage ratio requirement is a supplement of the risk-
weighted capital requirements and has implications for banks’ stability. It
must be at least 3% according to Basel III (Committee et al. (2010)). The
non-risk-weighted leverage ratio provides a more robust capital buffer in times
of crisis and enhances system stability. Blum (2008) analyzed risk-weighted
capital requirements and showed that an additional risk-independent lever-
age ratio control might be essential to recognize dishonest banks and improve
banking supervision.

The leverage of a financial system is defined as an aggregation of banks’
leverage at the individual level. The aggregate asset values, interbank expo-
sure, network structure, and leverage might change over time. Shin (2009)
introduced a leverage ratio for the whole financial system by aggregating
leverage levels of individual banks. In the following lemma, we define the
financial leverage of a system by means of network properties.

Lemma 5.1. Financial System Leverage Index
Financial system leverage as a function of the aggregate level of the asset
values, interbank exposure, and the network structure can be expressed as

Ῡ(t) = $t

¯(AL)t−1 + (1− h) ¯(AC)t−1 + d̄t−1E
max
t−1 − ¯(LD)t−1

(d̄t +R(#default)t)Emax
t + ε̄t

, (12)

where

• ¯(AL)t is the average value of liquid assets in the system at time t;

• ¯(AC)t is the average value of collateral assets in the system at time t;

• Emax
t is the maximum exposure in the system at time t;

• d̄t is the average degree of nodes at time t;

• ¯(LD)t is the average deposit at time t;

• (#default)t is the expected number of failed banks at time t;
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• $t is the relative number of active banks changing over time;

• ε̄t is the average deposit shock at time t.

The proof is given in the appendix.

Bair et al. (2015) argued that the leverage ratio might be the most useful
financial stability tool alongside risk-based capital requirement to enhance
the resiliency of a financial system during downturns. The stability of a
financial system can be affected directly by high leverage as this would mag-
nify the distress caused by a bank’s failure and transmit the same to many
other institutions. Therefore, measuring and restricting leverage at the sys-
tem level is necessary for reducing systemic risk.

The financial system leverage index Ῡt, which is defined in Equation (12),
shows that leverage has a nonlinear relation with the average degree of con-
nectivity of the network, d̄t. It also has an inverse relation with the expected
number of defaulted banks. The ratio of the number of active banks between
two adjacent periods (Ῡt) reflects the partial stability of the network over
time.

This result is consistent with earlier findings on the stability of large
systems, such as May (1972) and Gofman (2014), who show a non-monotonic
relation between the highest degree of the nodes in the financial network and
its resilience.

In equilibrium, a firm trusts its relations with its counterparties and keeps
the required capital to absorb the stress from the system. When the system
is moved away from equilibrium, a restoring force pushes it back to a sta-
ble equilibrium point. We investigate the efficiency of equilibrium using the
characterization of financial contagion through endogenous interbank coun-
terparty relations. The main endogeneity in this model includes the structure
of the network and the terms of mutual interbank agreements. We define
equilibrium by using the non-cooperative game model, which was introduced
by Jackson and Van den Nouweland (2005).

Definition 5. Cascade Equilibrium
The system is in equilibrium when it satisfies the following two conditions:
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1. No player in the system is unilaterally willing to drop its connections
with its counterparties. This means that the expected profit each coun-
terparty receives from its relation is not smaller than the expected profit
(minus risk exposure) by ending its relations.

2. Two players who are not linked through the interbank network have no
incentive to establish a relation. This means that if one player has a
benefit from forming a new link, the other player in the proposed link
will suffer a cost.

Let Ῡ(t) be a non-linear, time-varying dynamic system of financial system
leverage, given as

˙̄Υ(t) = f(Ῡ(t), u(t), t), (13)

where u(t) is the input function. Let (Ῡt0) be the financial system leverage
at the initial state.

Let new state η(t) = Ῡ(t)− Ῡe be the distance between the current state
of the system and an equilibrium state. Using a Taylor series expansion
and computing derivative η(t) with respect to the expectation of interbank
exposure, we can show that

η̇(t) =
d̄t−1

d̄t +R(#default)t)
η(t). (14)

Equation (14) shows that to assess the resilience of the financial system, we
need to take into account the altering configuration and the dynamics of the
system. Based on this result, we can define the stability condition of a system
as follows.

Definition 6. Stable System
A system is stable with respect to perturbations of the initial state (cascade)
and input function (contagion) if

||δη(t)|| < ε, ∀t0, ε, t ≥ t0, (15)

where

δη(t) = (η(t0) + δη|t0 , u(t) + δu(t), t)− η(t0) (16)

is the system variation, when moving away from an equilibrium state due to
the perturbations of the initial state (cascade) and the input system (conta-
gion).
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The system might converge to the equilibrium state in the long run if

lim
t→∞
||δη(t)|| = 0. (17)

The ultimate goal of regulation is to build a banking system that can ab-
sorb stress and resist perturbations caused by unpredicted large-scale events.
The desired system should have the ability to recover to a stable state and
provide acceptable quality services as rapidly and economically as possible.
This system should restore its functionality and maintain its core purpose for
a long period. We assess the resilience of the banking system with respect
to the dynamics and structure of an interbank market over time.

Definition 7. System Resilience
The banking system can change dynamically over time, such that the forma-
tion of this system can evolve based on outside events and/or the decisions
made by agents. The resilience of this system can be measured by the change
in its leverage over time:

ζ(t) =

∫ t

t0

[Ῡ(t0)− Ῡ(s)]ds. (18)

We assess the stability of a banking system affected by the different mech-
anisms of stresses by measuring the financial system leverage ratio. Knowing
which macroprudential policies can minimize losses and damages, and max-
imize the ability and capacity of the system to adapt and adjust to such
events, is beneficial. We measure the resilience of the system in terms of
its ability to find adaptation strategies corresponding to crises and to return
the system to a functioning condition. It is essential to understand the post-
shock system performance and design a recovery mechanism for a system to
provide acceptable high-quality service over time.

6. Macroprudential policy

In this section, we consider common issues associated with regulating
financial institutions, mainly banks. We study different macroprudential
policies to reduce transmission of shocks in the system. To improve finan-
cial stability, a systemic view on the resilience of the financial system needs
to consider the financial system as a full complex system. Macroprudential
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supervision is directly interlinked with conventional supervision. Later, we
analyze the regulatory rules imposed on the system and discuss how the new
regulatory mechanisms respond to systemic events.

Banking regulation is a form of government intervention into the financial
activities of banks by imposing rules or legal restrictions. These regulations
include a set of standard settings for capital, leverage, and liquidity require-
ments. These regulations carry costs and benefits for the entire economy.
The benefits are derived from the reduction in expected crisis costs and the
increase in the resilience of the economy. Costs are associated with the im-
pacts on lending spreads and the costs of inappropriately regulated leverage
and capital that might contribute to the initiation of financial crisis (see, e.g.,
Elliott et al. (2012)).

Microprudential policies consider different mechanisms to insure individ-
ual institutions against default. Insurance companies or the private sector
in capital markets provide this guarantee and diversify the risk of individual
institutions. The traditional function of central banks is to act as a Lender
Of Last Resort (LOLR). Central banks can stabilize the system by lending
to illiquid but solvent institutions or to insolvent institutions against an un-
certain collateral.

In the aftermath of the recent crisis, practitioners and academics admit
that the microprudential policies failed to appropriately reduce the conse-
quences of systemic crises. Indeed, these policy interventions in the financial
system are a set of individual-level decisions that did not take the risk of
counterparties into account. The microprudential policies regulate banks to
diversify their stress with the objective of enhancing individual-level stabil-
ity. These policies amplify the likelihood of a systemic collapse, since they
increase asset return correlations as one of the primary sources of systemic
risk. On the contrary, a macroprudential approach has a systemic viewpoint
and seeks the stability of the entire financial system.

In what follows, we review macroprudential tools to mitigate systemic
risk. One way to mitigate systemic risk is to require an ex-ante capital buffer.
A counter-cyclical buffer is a well-understood tool that is specified in the mi-
croprudential regulation. It is required that banks hold a sufficient amount
of equity to secure creditor loss. This rule increases the capital ratio by
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shrinking assets and indicates a shift away from system equilibrium. From
this viewpoint, the higher minimum capital requirements imposed in
Basel III raise asset correlations and lead to higher systemic risk. Therefore,
minimum capital requirements should be continually adjusted for non-SIFIs
in non-crisis times.

Imposing minimum capital requirements can regulate the liability side;
alternatively, the regulator can adjust the asset side by imposing higher min-
imum liquidity requirements. By increasing banks’ stress-free liquidity of
banks, policy makers provide self-insurance with regard to paying back debt
to creditors in the short term. Nevertheless, this regulation regime might
amplify the reliance on liquidity with liquid assets that are eligible for cen-
tral bank refinancing.

The lesson from the recent global financial crisis is that generally both
leverage and liquidity have significant contributions to systemic collapse, and
thus regulating both is necessary Turner et al. (2009). The leverage ratio,
commonly used as a measure of regulatory leverage, is a complementary
instrument to the minimum capital requirement tool. D’Hulster (2009) elab-
orated on the characteristics of the leverage ratio and demonstrated the re-
strictions on its implementation. This regulatory tool at the micro level can
be used as a leverage limit for supervised entities. Moreover, as a macropru-
dential tool, it can be a gauge for monitoring the susceptibility of a system
and as a trigger for capital requirements, as defined under Pillar 2 of Basel II.

Individual- and aggregate-stress-based haircuts help preserve the
capability of banks to pay back debt. Fecht et al. (2015) documented the over-
all reduction in borrowing collateral from the Eurosystem by German banks
after Lehman’s default. Their empirical results indicated an improvement
in the average quality of their collateral: they were holding more collateral
relative to the liquidity of the Eurosystem, given that solvent banks were
obligated to provide extra collateral.
A general difficulty when employing macroprudential tools is setting regimes
tightly in non-crisis periods, while reducing the vulnerability of the system
in crises.
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7. Model Simulation

This section outlines a framework for deriving policy implications from
our model. We use a numerical simulation to investigate the role of macropru-
dential regulation to stabilize the financial system. We simulate our model
to detect SIFIs and contributions of individual institutions’ stress to the en-
tire system. Our simulation is based on a fully heterogeneous model of an
interbank system. We assess the stability of the financial system by means
of network properties and how the network properties change dynamically
through time. Our model characterizes a stylized bank’s balance sheet and
its interconnection to its counterparties.

Our simulation of the model starts from the current state of the system,
that is, it is not necessary that the system is in equilibrium. At time zero, all
institutions are in the normal state, and there is no defaulting bank in the
system. The balance sheet will be updated dynamically following a mark-to-
market procedure. We suppose banks just have access to interbank resources
and no external sources such as central banks. The simulation of exposures
is independent of network properties that would raise questions about the
validity of the system. Finally, we assume that at the time of default, solvent
nodes impose stress evenly on their counterparties.

We investigate different types of cascades, including defaults by one or
several random institutions, defaults by SIFIs, and common shocks to the
entire system. Later, we introduce different macroprudential policies to mit-
igate systemic collapse. We also analyze the resilience of the financial system
to contagion that begins with a collapse of the most interconnected institu-
tion (SIFI) and causes a cascade of counterparty defaults.

The network of interbank counterparties can be modeled as a random
graph to describe how financial contagion is propagated. The random graph
families that have been used in the literature are inhomogeneous random
graphs, for example, Erds–Renyi random graphs (Erdős and Rényi (1959))
and preferential attachment models. Albert and Barabási (2002) suggested
a preferential attachment model of an undirected graph with a power-law
distribution. Bollobás et al. (2003) proposed a directed scale-free graph with
preferential attachment associated with the degree distribution of the graph.
In our simulation, we model interbank networks with a directed scale-free
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graph proposed by Bollobás et al. (2003), which is similar to that introduced
in Amini et al. (2012b). In this model, when a new firm enters the market
and starts to establish relations with current firms, it is more likely to choose
highly connected firms as counterparties.

We simulate an interbank exposure network using the parameters de-
rived in an empirical study by Cont et al. (2010). They studied the Brazilian
financial system and observed that this financial network is a complex hetero-
geneous network with heavy-tailed in-degrees and out-degrees distributions.
The mutual exposure of counterparties in this financial system is distributed
as a power-law tail with exponents between two and three during crises. They
observed a heterogeneous and complex system with correlated degrees asso-
ciated with the size of liabilities and exposures. Another study by Boss et al.
(2004) of the Austrian financial system showed similar network properties,
for example, degrees following power-law distributions and mutual exposures
following Pareto distributions. The consistency in the empirical findings of
the studies on two different financial systems led us to simulate our financial
random network with the aforementioned random-graph properties.

The recent financial crisis showed that banks need to increase the quan-
tity and quality of capital to improve the stability of the system. Capital
comprises a cushion to prevent likely losses. Basel III restricts common eq-
uity Tier 1 to above 4.5% of risk-weighted assets and minimum Tier 1 capital
to above 6%. The total capital must remain at a level of at least 8% of risk-
weighted assets. Furthermore, banks are required to hold high-quality liquid
assets, especially during times of stress.

In our simulation, we follow the balance-sheet configuration of Gai et al.
(2011). In this setup, liquid assets and collateral assets are 0.1% and 10%
of the balance sheet, respectively, and total capital is 6 percentage points of
risk-weighted assets. For different simulation exercises, we adjust the pro-
portion of both capital and liquid assets.

We simulate a directed scale-free graph explained by Bollobás et al. (2003)
using parameters derived from a real financial network. Figure 1 shows a sim-
ulated direct random network. We identify SIFIs in the network using the
systemic impact index. The nodes of this weighted network represent sys-
temically critical nodes that can threaten the stability of the system.

28



Figure 1: Visualization of a simulated interbank network.

7.1. Experiments

We set up a framework for deriving policy implications and examining
how different policies can help avoid a systemic collapse. We formulate poli-
cies and design corresponding experiments with the initial evaluation of the
possibility of implementation and assess the impact and effectiveness of poli-
cies in achieving stated goals. The fundamental parameters and variables of
the model are evaluated as to whether they are amenable to change through
policy intervention, and if so, whether it would be possible and reasonable in
practice. Prior to making policy recommendations, the ethicality of altering
the variables is considered.

7.1.1. Experiment 1: Basic-exposure interbank network

In the first experiment, we simulate a stylized balance sheet with 80%
non-banking assets and 20% interbank assets. The non-banking asset side
of the balance sheet consists of 2% liquid assets and 10% collateral assets,
with the remaining being fixed assets. The total capital buffer must remain
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at a level of 4% of risk-weighted assets. The initial aggregate haircut of the
system is 0.1%, and in this experiment, there are no individual haircuts for
any bank. We consider both zero-recovery and positive-recovery rates for
counterparties of a default node. We simulate an interbank network as a
directed scale-free graph and mutual exposures with parameters mentioned
in the empirical study by Cont et al. (2010). In this experiment, we shock a
single random node by considerably stressing its exposure. This node starts
to hoard liquidity and impose stress to its counterparties.

7.1.2. Experiment 2: Shocking a single SIFI

In this experiment, we use the same structure of the balance sheet and
the same interbank network. To study the difference between the propaga-
tion of shocks started by a SIFI or a random node, we identify a SIFI in the
first stage. We stress the identified SIFI with a large individual haircut shock.

7.1.3. Experiment 3: Common shock model

As mentioned before, stress can either spread throughout the entire sys-
tem or a part of the same in a domino fashion due to interlinked financial
exposures or exogenous factors have a strong influence on the entire system.
In this experiment, we keep the basic configuration of the balance sheet and
interbank network, and the rate of aggregate haircut as in experiment 1.
Here, we shock the entire system by shocking all nodes that receive adverse
individual haircut stress to create the liquidity-hoarding phenomenon.

7.1.4. Experiment 4: Different levels of capital buffers for all banks

In experiment 4, we examine the stability of the system with a different
capital buffer for all banks. We use the same balance sheet and network
structure, and change the level of capital required of banks.

7.1.5. Experiment 5: Different capital buffers for SIFIs and non-SIFIs

New regulations of financial institutions require SIFIs to have contingency
plans and higher capital or liquidity levels as safeguards against possible sys-
temic failures. These regulations try to prevent SIFIs from becoming “too
big to fail” or “too connected to fail.” One way to mitigate systemic risk is
to require different capital buffers for SIFIs and non-SIFIs.
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7.1.6. Experiment 6: Adding individual and aggregate haircut shocks

In this experiment, we increase the initial haircut by introducing individ-
ual haircuts for SIFIs and assess the behavior of the system with respect to
this parameter. A haircut is a portion of an asset’s value that is used as col-
lateral. Haircut size is typically associated with the liquidity risk of the asset
to be used as collateral. Higher haircuts lead to safer positions for lenders
and protect them against losses incurred when selling collateral because of
counterparty defaults.

7.1.7. Experiment 7: Having leverage ratio requirement

As mentioned earlier, leverage ratio requirements can be applied as a
microprudential policy as well as a macroprudential tool. The simplest way
to calculate the leverage ratio is as the minimum proportion of Tier 1 capital
to entire regular adjusted assets. It is recommended that banks having a
leverage ratio of at least 4% for all banks and 3% for banks if their risk profiles
warrant them. In this experiment, we apply macroprudential policies and use
the same structure of the balance sheet and the same interbank network as
used in the first experiment. The propagation of shocks was started by a
SIFI.

7.1.8. Experiment 8: Having different leverage ratio requirements for SIFIs
and non-SIFIs

This experiment is similar to experiment 7; however, we maintain different
minimum leverage ratio for SIFIs and non-SIFIs. A higher leverage ratio may
be required for a financial institution if it requires closer supervision due to
managerial or operational weaknesses. We maintain a minimum leverage
ratio of 5% for SIFIs, to be considered as well-capitalized institutions and
also reducing the propagation of shocks.

7.2. Discussion and Policy Implications

An insolvent node in the banking system can pose systemic risks to the
whole system. Figure 2 shows the solvency condition for individual institu-
tions, which indicates the situation when debtors start collecting debts. This
plot also shows the decline in the number of connections during the shock
period. Therefore, insolvent institutes have fewer counterparties to diversify
their stress.
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Figure 2: Experiment 1: Changing the degree of individual nodes in the
network and their solvency conditions until the cascade of liquidity hoarding
ceases.

The results from empirical studies show the positive correlation between
the size of average interbank assets and average interbank liabilities of a bank.
In an interbank network topology, the in-degree and out-degree of a node rep-
resent the average sizes of interbank assets and liabilities, respectively. Fig-
ure 3 shows the distribution of degrees during the liquidity-hoarding period.
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Looking at the graphs displaying the average in-degrees and out-degrees of
nodes confirms the significant role of SIFIs in the propagation of stress in the
system.
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Figure 3: Average degree of the network until the liquidity-hoarding cascade
ceases.

Another important centrality measurement of a network is the minimum
number of pairs of individual nodes that have to be passed to reach another
node. This indicator shows the complexity level of a network regarding the
possibility of decomposition into smaller communities. Studies of different
types of networks in social sciences show that a decomposable system would
be stable in time. Figure 4 shows the change in average betweenness and
the average number of neighbors at each node, that is, the system becomes
less decomposable than before. As a result, the system moves away from the
equilibrium to an unstable state.

Figure 5 shows the percentage of defaults caused by shocks to SIFI and
non-SIFI nodes. We remark that a higher level of capital buffer can reduce
the vulnerability to a systemic collapse. Banks decide on the optimal capital
level by examining how much capital must be provided to prevent solvency
risk. After the 2007–2008 economic crisis, academics and practitioners ac-
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Figure 4: Experiments 1 & 2: Average betweenness and number of neighbors
in the network the liquidity-hoarding cascade ceases.

Figure 5: Number of defaults associated with different capital levels for
banks.

knowledge that this level must also account for counterparty risk.

We analyze the different required capital levels to absorb stress. Plotting
the distribution degree and the number of neighboring nodes (Figure 6) gives
that an increase in the level of capital can improve system stability. Banks
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decide on the optimal capital level by examining how much capital must
be provided to prevent solvency risk. Basel III changes the form of banks’
capital and increases the minimum level to 4.5% of assets while keeping the
additional 2.5% buffers to secure the system during a financial crisis.
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Figure 6: Average degree and number of neighbors when the entire system
is exposed to a shock, under different capital levels.

In experiment 5, we simulate the system under different levels of capital
buffers for SIFIs and non-SIFI. Plotting the system financial leverage (Stabil-
ity) of the network (figure 7) gives that the system is even stable with lower
capital buffers, while having a higher level for SIFIs. In equilibrium, a firm
trusts its relations with its counterparties and keeps the required capital to
absorb stress from the system. New rules change bank and system equilib-
rium and increase the capital ratio by shrinking assets; on the other hand,
these policies reduce the efficiency of banking functions. For that reason,
minimum capital requirements should be continually adjusted for non-SIFIs
during non-crisis periods.

By plotting the centrality measure of the network (figure 8), we can inves-
tigate how different haircut rates for SIFIs and non-SIFIs might restrict the
exposure to counterparties and improve the stability of the system. Having
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Figure 7: System financial leverage (stability) under different capital buffers
for SIFIs and non-SIFIs.
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Figure 8: Average degree and betweenness after introducing individual and
aggregate haircut rates.
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a tight regime during non-crisis periods for all institutions might reduce the
vulnerability of the system to systemic liquidity risk in times of crisis. How-
ever, different macroprudential policies for SIFIs and non-SIFIs can mitigate
the vulnerability to systemic collapse.

Figure 9: Resilience of a system after a shock to a SIFI, with and without
the leverage ratio requirements for all institutions or SIFIs.

Plots of system financial leverage (Figure: 9) and resilience of a system
after shocks (Figure: 10) give that minimum leverage requirements can miti-
gate the propagation of shocks and enhance system stability. This regulation
is rather easy to apply and monitor; however, it has limitations due to the
lack of risk-based capital requirements, thus requiring transparency for as-
set risk assessment. Under this regulation, institutions need to hold highly
liquid, high-quality securities. Applying different regulations for SIFIs and
non-SIFIs can be recommended, but even then, this regulation—as a single
tool—cannot prevent systemic crises with certainty.
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Figure 10: System financial leverage (stability) after a shock to a SIFI, with
and without leverage ratio requirements for all institutions or SIFIs.

8. Conclusions and Remarks

In this article, we study the stability of an interbank network as a com-
plex system. We review sources of systemic collapse that were revealed in
the recent economic crisis. By means of fixed-point theory, we identify SIFIs
by considering the explicit characterization of the equilibrium behavior of
the banking system. We discuss how to measure stability in an interbank
network by means of the leverage ratio of the system.

The main objective of this article is to provide policy makers with infor-
mation to allow them to modify or formulate regulatory policies. We try to
provide some evidence and raise the question as to how best can the findings
of theoretical research be fed into the regulation policy procedure. In an
attempt to deal with the issue, we construct a simple interbank framework
for deriving policy implications. Our aim is to raise some of the questions
that need to be answered and highlight some issues that need to be consid-
ered, rather than to give straightforward answers. As a consequence of the
absence of consistent information on banking policy interventions and un-
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known sources of systemic collapse and the complexity of the system’s struc-
ture, this form of regulation analysis, in practice, is rare. Therefore, it needs
to be done in an experimental form with some assumptions and limitations.
It is clear that there is a need for innovative policy responses that are more
directly associated with the nature of the systemic-risk problems to be solved

In our simulation, we focus on different mechanisms of contagion: com-
mon shocks and domino-fashion sequential defaults and combinations thereof
started by random institutes or SIFIs. Different macroprudential policy sce-
narios are implemented to reduce the transmission of shocks to the system.
Our numerical results show that it is essential to choose appropriate aggre-
gate or specific macroprudential regimes for SIFIs and non-SIFIs.

The results indicate that the percentage of failures in a financial system
depends on the network’s architecture and its stability, and also how shocks
start and propagate through the system. In other types of networks such
as social networks or epidemiology systems, interconnections can speed up
the propagation of a phenomenon. In the financial system, interconnections
play a fundamental role in amplifying contagion but also in reducing risk via
diversification.

On a broader level, we have seen that there are two main findings in the
application of our framework. First, the results highlight that none of the
existing or proposed regulatory policies—when applied as a single strategy—
can stop or mitigate systemic collapses. This means that it is necessary to
apply a combination of policies when considering the role of an institution in
the system. Second, in reality, policymakers should look at several indicators
to identify SIFIs and measure the stability of a financial system to create an
early-warning system for systemic crisis. We leave the study of the optimal
policy, in terms of cost and benefit, in this type of model for future research.
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Erdős, P. and Rényi, A. (1959). On random graphs. Publicationes Mathe-
maticae Debrecen, 6:290–297.

Fecht, F., Nyborg, K. G., Rocholl, J., and Woschitz, J. (2015). Collateral,
central bank repos, and systemic arbitrage.

Fouque, J.-P. and Langsam, J. A. (2013). Handbook on Systemic Risk. Cam-
bridge University Press.

Freixas, X., Parigi, B. M., and Rochet, J.-C. (2000). Systemic risk, interbank
relations, and liquidity provision by the central bank. Journal of money,
credit and banking, pages 611–638.

Frobenius, G. F., Frobenius, F. G., Frobenius, F. G., and Frobenius,
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Appendix

Proof of Proposition 1

To compute the optimum value of vector x in the equation (x = Tx), we
define the following least squares error-minimization problem:

||x̄− T x̄||2 =
||Tkx1 − x1||2

k
≤ Constant

k
, (19)

where T = αW + βWr.
Vector x can be expressed as an averaging series of its components:

xk =
x1 + T1x1 + · · ·+ Tk−1x1

k
, (20)

and by choosing the initial value of the iteration procedures as x1 = Wr1,
we get the following recurrent form:

xk+1 =
k

k + 1
Wxk +

1

k + 1
Wr1. (21)

Using equation T = αW + βWr, Tk can be expressed as

xk =
k

k + 1
W +

1

k + 1
Wr. (22)

Proof of Proposition 2

Part (a): Φ : X → X is defined as a continuous, transformation func-
tion that maps X onto itself. Based on Brouwer’s fixed-point theorem, Φ is
a continuous mapping function. Therefore, there exists a fixed point xi ∈ X.
Vector x is an economy that is a set of firms corresponding to an interbank
equilibrium of a financial network. Note that any interbank equilibrium in
this model is a fixed point of Φ.

Part (b): If there exist two fixed points x1 and x2,

d(x1, x2) = d(Φ(x1),Φ(x2)) < θd(x1, x2), (23)

where d(x1, x2) = ||x1 − x2||2 with condition 0 ≤ θ < 1. We should prove
that d(x1, x2)→ 0.
According to the Perron–Frobenius theorem, proved by Perron (1907) and
Frobenius et al. (1912), for matrix T (a real square matrix with non-negative
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entries), there exists a dominant eigenvector x̄ with strictly positive compo-
nents, which can be expressed as

x̂ = argmin
x∈

∑ {||x̄− T x̄||2 + ε}.

Similarly, we have Tx = x − ε, and x̂ coincides with x̄ if ε is small enough.
Then, we can obtain a linear convergence in the fixed-point iterations.

Given the mapping function Φ on X → X,

d(x1, x2) = d(Φ(x1),Φ(x2))

= d(Tx1, Tx2)

= d(x1 − ε1, x2 − ε2)

< d(x1, x2)− d(ε1, ε2)

≤ θd(x1, x2),

we can write the above equation in a general form

d(xn, xn+1) = d(Φ(xn),Φ(xn+1))

≤ θd(xn, xn+1).

The recurrence form gives us

d(xn, xn+1) ≤ θnd(x0, x1)

(n = 1, 2, ...),

which implies d(xp, xq)→ 0 for any arbitrary p, q in n = 1, 2, · · · . Hence, the
interbank equilibria of the model are basically unique.

Proof of Lemma 1:

We define the capital reserve of a node (bank) in the interbank network
at time t as (Kj

t ), j ∈ {1, · · · , N})t ≥ 0; this is updated as

Ki
t = (Ki

t−1 −
∑

j∈Ψ(K)

(1−Rj)E
ij
t−1)+.

The solvency condition in a non-default bank at time t, when it receives
a deposit shock, can be expressed as

Ki
t >

∑
j

Eij
t + εit.
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We define the financial leverage (leverage multiple) of a bank using cap-
ital reserve and by updating the information from a counterparty network
(Equation (9)). Index Υi(t) measures the financial leverage of company i at
time t:

Υi(t) =
Ki

t−1∑
j E

ij
t +

∑
j∈Ψ(i)(1−Rj)E

ij
t )+εit

=
(AF )it−1 + (1− hi)(AC)it−1 + (AL)it−1

∑
j E

ij
t − (LD)it∑

j E
ij
t +

∑
j∈Ψ(i)(1−Rj)E

ij
t )+εit

.

Now, we define the leverage of the financial system as an aggregation of
individual banks’ leverage in a financial network:

Ῡ(t) =
1

Nt

∑
i

Υi(t).

We approximate the average of interbank exposure Eij
t at time t as d̄tE

max
t ,

such that d̄ is the average connectivity of the network and Emax
t is the ex-

pectation of the extreme-value interbank exposure at that time since it has
a power-law distribution.

Thus, financial system leverage, when using financial network properties,
can be expressed as

Ῡ(t) = $t

¯(AL)t−1 + (1− h) ¯(AC)t−1 + d̄t−1E
max
t−1 − ¯(LD)t−1

(d̄t +R(#default)t)Emax
t + ε̄t∗

,

where ¯(AL)t,
¯(AC)t,

¯(LD)t, and d̄t denote the average value of liquid assets,
average value of collateral assets, average deposits, and the average degree
of the system, respectively. Emax

t is the maximum exposure and ε̄t is the
average deposit shock to the system. (#default)t is the expected number of
failed banks at time t and $t is the relative number of active banks in the
period from time t− 1 to time t.

A: Measurement of Network Centrality

Definition 8. In-Degree
In a financial network setting, the in-degree of one node represents the number
of its creditors. The in-degree of a node i is given as

degreeini ? = #j?W |wji > 0. (24)
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Definition 9. Out-Degree
In this network, the out-degree of a node represents its number of debtors,
and is given as

degreeouti := #j?W |wij > 0. (25)

The other important characteristics of a network are how close a node is to
other nodes and how easy it is to reach other nodes.

Definition 10. Closeness Centrality Closeness centrality (CC) measures
how far a node is from other nodes when measured in terms of the relative
distances between nodes. It can be expressed as

CCi =
n− 1∑
j Ai,j

. (26)

Definition 11. Betweenness Centrality Let Pij be the total number of
paths between nodes i and j. Betweenness centrality (BC) measures the in-
termediary characteristics of a node and can be defined as

BCk =
∑
i,j 6=k

=

Pk
ij

Pij(
n−1

2

) , (27)

where P k
ij is the number of paths passing through node k.

B: Basic BA Algorithm

The basic Barabasi–Albert (BA) algorithm for generating random scale-
free networks proceeds as follows (cf. Albert and Barabási (2002)):

1. Start with an initial set of small fully connected nodes;

2. Add new vertices one by one, each one with exactly m edges;

3. Each new edge connects to an existing vertex in proportion to the
number of edges that the vertex already has a preferential attachment
with.
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